Java:

Learning to Program with Robots

Chapter 07: More on Variables and Methods

Chapter Objectives

After studying this chapter, you should be able to:

e \Write queries to reflect the state of an object

e Use queries to write a test harness that tests your class

e Write classes that use types other than integer, including floating-
point types, booleans, characters, and strings

e \Write and use an enumerated type

e \Write a class modeling a simple problem

e Describe the difference between a class variable and an instance
variable

e Write classes that implement an interface and can be used with
provided graphical user interfaces from the becker library

Testing a class involves conducting many individual tests.
Collectively, these tests are called a test suite.
Each test involves five steps:
1. Decide which method you want to test.
Set up a known situation.
Determine the expected result of executing the method.
Execute the method.
Verify the results.

7.1.1: Testing a Command
o k& L

Ideally, we would like to test the class after each change. This implies
automating the testing.

1C3 Import becker.util. Test;

g public class TestHarness

e

o public static void main(String[] args)

O { /I Step 1: Test move method

© I/l Step 2: Put robot in an empty city on (4,2) facing East.

=% SimpleCity ¢ = new SimpleCity();

43; SimpleBot karel = new SimpleBot(c, 4, 2, Constants.EAST);

IG—J I/l Step 3: The robot should end up on (4,3) facing East.

o /] Step 4: Execute the method.

o karel.move();

™~ I/l Step 5: Verify the result.
Test tester = new Test();
tester.ckEquals("new ave", 3, karel.getAvenue());
tester.ckEquals("same str", 4, karel.getStreet());
tester.ckEquals("same dir", Constants.EAST, karel.getDirection());

} e Ci\java' JCreator¥3.5',GE2001.exe
} Passed: new ave: expected '3'; actual

Passed: same str: expected ’41; actual '4°,
%¥ Failed: same dir: expected 'B'; actual

-c% How does ckEquals work?
&

& public class Test

S

S public void ckEquals(String msg, int expected, int actual)
o |

= if (expected == actual)
0 { print passed message
o)

— } else

— { print failed message
N }

~ 3

}

7.1.3: Using Multiple Main Methods

Each class may have its own main method. This allows us to put a test
harness into every class! Write one more main method in its own class
(as we have been doing) to run the program.

public class SimpleBot extends Paintable
{ private int street;
private int avenue;

oublic SimpleBot(...) { ... }
public void move() { ... }

public static void main(String[] args)
{ SimpleCity c = new SimpleCity();
SimpleBot karel = new SimpleBot(c, 4, 2, Constants.EAST);

karel.move();

Test tester = new Test();
tester.ckEquals("new ave", 3, karel.getAvenue());
tester.ckEquals("same str", 4, karel.street);

Junit

- 0] |
JUnit
Test class name:
|hec:ker.ruhuts.5uiteﬂuhuts - Run

Reload classes every run

I /T

Runs: 16/16 X Errors: 0 % Failures: 1

Hesults:
X testOneRobotlhecker. robots TestCind:numThings an intg | Run
4 T] |

L X Failures | g* Test Hierarchy

junitframewark AssertionF ailedErrar: numThings on interse*
at hecker.robots TestCity assenOneRohot(TestCity java: 900 | =
at becker.rohots. TestCity testOneRobot{TestCity java:44)

at sun.reflect MativeMethodAccessorlmplinvokeDiMNative Mel w |
4 Il J

Finished: 0.266 seconds E=it

7.2: Using Numeric Types

What Is a type?

e It Is used when declaring a {instance, temporary, parameter}

variable. For example:
private int street; /l instance variable
Robot karel = new Robot(...); /l temporary variable

e The type specifies the values the variable may take on.

e street may be assigned integers like -10, 0, and 49 (and only
Integers).

e karel may be assigned Robot objects.

e The type specifies the operations that may be performed.
e street may be used with +, -, *, /, =, ==, etc.

e karel may be used with the method invocation operator, . (dot):
karel.move(), etc.

7.2 Using Numeric Types

Java has six numeric types

Integer Types
Preci-
Type Smallest Value Largest VValue sion
byte -128 127 exact
short -32,768 32,767 |exact
int -2,147,483,648 2,147,483,647 | exact
long | -9,223,372,036,854,775,808| 9,223,372,036,854,775,807 exact
Floating-Point Types
Type Smallest Magnitude Largest Magnitude | Precision
float +1.40239846 x 107 +3.40282347 x 10*° | about 7
digits
double| +4.940656458412 x 10°%*| +1.7976931348623 x 10°*® about 16
digits

7.2: Using Numeric Types

Operations available on numeric types:

* | % multiplication, division, remainder
+ - addition, subtraction

< <= > >=I= == comparison

- assignment

The type of *, /, %, +, and — is the same as the largest of the operands.
For example:

Int a = 2;

double b = 1.5;
The result of a + b i1s 3.5 because b, a double, stores larger numbers
than a, an int.

7.2.3: Converting Between Numeric Types

Int1 = 159:;
double d =1i;

The integer 159 Is implicitly converted to
159.0 before assignment to d.

double d = 3.999;
Inti1=d;

This results in a compile-time error. Java
doesn’t know what to do with the .999,
which can’t be stored in an int.

double d = 3.999;
int i = (int)d;

or

intj = (int)(d *d /2.5):

Java converts the double value to an integer
by dropping the decimal part (not rounding).
That Is, i becomes 3.

7.2.4: Formatting Numbers

double carPrice = 12225.00:;
double taxRate = 0.15;

System.out.printin(*Car: " + carPrice);
System.out.printin("Tax: " + carPrice * taxRate);
System.out.printin("Total: " + carPrice * (1.0 + taxRate));

This code gives the following output:

Car: 12225.0
Tax: 1833.75
Total: 14058.749999999998

We would like to format it using a familiar currency symbol, such as $,

and two decimal places.
iImport java.text.NumberFormat;

NumberFormat money = NumberFormat.getCurrencylnstance();

System.out.printin(Total: " + money.format(carPrice * (1.0 + taxRate)));

7.2.5: Taking Advantage of Shortcuts

Rather than writing
public void move()
{ this.street = this.street + this.strOffset();
this.avenue = this.avenue + this.aveOffset();
Utilities.sleep(400);

}

one may write
public void move()
{ this.street += this.strOffset();
this.avenue +=this.aveOffset();
Utilities.sleep(400);

}

In general,
«var» += «expression»;

IS evaluated as
«var» = «var» + («expression»);

Similarly for -=, *=, /=, and %-=.

7.3.1: The Boolean Type

A boolean variable stores either true or false.

public class SimpleBot extends Paintable
{ private int street;

private int avenue;

private boolean isBroken = false;

public void breakRobot()
{ this.isBroken = false;

}

public void move()

{ //'\gnore a command to move if the robot is broken.

If ('this.isBroken)

{ this.street += this.strOffset();
this.avenue +=this.aveOffset();
Utilities.sleep(400);

}
}

Instance variables,
temporary variables,
parameter variables, and
constants can all be of
type boolean.

7.3.2: The Character Type

A single character such as a, Z, ?, or 5 can be stored in a variable of
type char.

Characters are the symbols you can type at the keyboard — plus many
that you can’t type directly.

public class KeyBot extends RobotSE
{ ...

/** Override a method in Robot that does nothing with the specifics of what a KeyBot
* should do when a specific key is typed on the keyboard. */

protected void keyTyped(char key)
{ if (key =="'m" || key =='M")
{ this.move();
} else if (key =="r" || key =="'R")
{ this.turnRight();
} else if (key =="I" || key =="L")
{ this.turnLeft();
}
}
}

Cé Some special characters are written with escape sequences:
— Sequence Meaning
% \' Single quote
Rt Double quote
o\ Backslash
= B Newline — used to start a new line of text when printing at
'ﬁ the console.
g \t Tab — inserts space so the next character is placed at the
N next tab stop.
\b Backspace — moves the cursor backwards over the
previously printed character.
\r Return — moves the cursor to the beginning of the current
line.
\f Form feed — moves the cursor to the top of the next page of
a printer.
\udddd | A Unicode character, each d being a hexadecimal digit.

A string Is a sequence of characters. They are used frequently in Java
programs.

public class StringExample

{

public static void main(String[] args)
{ String msg = "Don't drink and drive.";

7.3.3: Using Strings

System.out.println("Good advice: " + mMsQ);

}
}

String Is a class (like Robot), but has special support in Java:

¢ Java will automatically construct a String object for a sequence of
characters between double quotes.

e Java will “add” two strings together with the plus operator to create
a new string. This is called concatenation.

¢ Java will automatically convert primitive values and objects to
strings before concatenating them with a string.

7.3.3: Special Support for Strings

import becker.robots.*;
public class Main A String object is created automatically.

{

public static void main(String[] args)

{ String greeting = "Hello"; _
String name = "karel"; / Four concatenated strings.

System.out.println(greeting + ", " + name + "I");

Primitive automatically converted to string. \
System.out.println("Did you know that 2*PI =" + 2*Math.PI + "2");

City ¢ = new City();
Robot karel = new Robot(c, 1, 2, Direction.SOUTH);

} Object automatically
} converted to string.

Hello, karel!

Did you know that 2*PIl = 6.2831853071795867
c=becker.robots.City[SimBag[robots=[becker.robots.Robot[street=1, av
enue=2, direction=SOUTH, isBroken=false,numThingsIinBackpack=0]], t

hings=[]]]

7.3.3: Overriding toString

To convert an object to a String, Java calls the object’s toString
method. Classes should override toString to return a meaningful
value.

public class SimpleBot extends Paintable
{ private int street;

private int avenue;

private int direction;

[** Represent a SimpleBot as a string. */
public String toString()
{ return "SimpleBot" +
"[street="+ this.street +
" avenue=" + this.avenue +
" direction="+ this.direction +
"1
}
}

7.3.3: Querying a String (1/2)

Method
Int length()

char charAt(
Int index)

Int compareTo(
String aString)

boolean equals(
Object anOb))

boolean startsWith(
String prefix)

Description
How many characters are in this string?

Which character is at the given index
(position)? Indices start at O.

Return O if this string Is equal to aString; -1 If
this string

7.3.3: Querying a String (2/2)

Int iIndexOf(
char ch)
Int indexOf(char ch,
Int fromindex)
Int iIndexOf(String subString)

Int lastindexOf(char ch)

7.3.3: Querying a String

public class StringQueryDemo
{
public static void main(String[] args)
{ String s1 = "A string to play with.";
String s2 = "Another string.";

Int slLen =sl.length();
System.out.println(" + s1 + ™is" + sllLen + " characters long.");

If (sl.compareTo(s2) <0)

{ System.out.println(" + s1 + " appears before " + S2 + " in the dictionary.");
} elseif (sl.compareTo(s2) > 0)

{ System.out.println(" + s1 + " appears after " + S2 + " in the dictionary.");

} else

{ System.out.println("The two strings are equal.");

}

Int pos = sl.indexOf("play");
System.out.println("play' appears at position " + p0S);

System.out.println("The character atindex 3 of " + S2 + ™ is " + s2.charAt(3));

7.3.3: Transforming a String

public class StringTransformDemo
{

public static void main(String[] args)

{

String w = "warning: ";

System.out.printin(w.toUpperCase() + "Core breach imminent!");
System.out.printin(w.trim().toUpperCase() + "Core breach imminent!");

System.out.printin(w.substring(1, 4));
}

—

Output:

WARNING: Core breach imminent!
WARNING:Core breach imminent!
arn

A palindrome is a phrase that is the same backwards and forwards —
after all the letters have been made the same case and non-letter
characters have been removed.

Here’s are some samples:
Civic
Madam, I’'m Adam.
Was it a cat | saw?
A man, a plan, a canal. Panama!

Case Study 1: Palindromes

Write a class named Palindrome which contains a method named
isPalindrome. This method takes a string as a parameter and returns
true If it is a palindrome and false If it is not.

Case Study 1: Palindrome Test Suite

Import becker.util. Test;

public class Palindrome

{
public Palindrome() { super(); }

public boolean isPalindrome(String p)
{ return true;

}

public static void main(String[] args)
{ Palindrome pal = new Palindrome();

Test tester = new Test();
tester.ckEquals(a", true, pal.isPalindrome("a"));
tester.ckEquals("aba", true, pal.isPalindrome(aba"));
tester.ckEquals("aBbA", true, pal.isPalindrome("aBbA"));
tester.ckEquals("Madam, I'm Adam", true,

pal.isPalindrome("Madam, I'm Adam"));
tester.ckEquals(ac", false, pal.isPalindrome(ac"));
tester.ckEquals('ccA", false, pal.isPalindrome("ccA"));

Case Study 1: Palindrome Strategy

Step 1: If characters 0 and 4 match, continue on. If they don’t, stop.

Index: 0 1 2 3 4
letter: C | V | C
T T
Step 2: If characters 1 and 3 match, continue on. If they don’t, stop.
Index: 0 1 2 3 4
letter: C | vV | C
T T
Step 3: Comparing the same character — can stop.
Index: 0 1 2 3 4
letter: C | vV | C

i

Four step process for writing a loop:
1.What must be repeated?

2.\What is the test that must be true when the loop finishes?

3.Combine the results of 1 and the negation of 2 to form a loop.

Case Study 1: Four Step Process

4.Add statements before or after to finish the job.

Case Study 1: Develop Pseudocode

public boolean isPalindrome(String p)
{ left = position of first character in string
right = position of last character in string

while (left and right have not met/crossed && might be a palindrome)
{ if (character at left is not the same as character at right)

{ the string is not a palindrome
} else

{ advance left and right to the next positions

}
}

return the answer

—

public boolean isPalindrome(String p)
{

Int left = 0;

int right = p.length() - 1;

boolean mightBePal = true;

while (left < right && mightBePal)
{ char leftCh = p.charAt(left);
char rightCh = p.charAt(right);

If (rightCh I=leftCh)
{ mightBePal = false;
} else
{ left +=1;
right -= 1,
}
}

return mightBePal,

}

Case Study 1: First Refinement

public boolean isPalindrome(String p)
{ p=p.toLowerCase();

int left = 0;
int right = p.length() - 1;
boolean mightBePal = true;

while (left < right && mightBePal)
{ char leftCh = p.charAt(left);
char rightCh = p.charAt(right);

Case Study 1: Second Refinement

If (rightCh <'a' [| rightCh > 'z") { right -=1; }
else if (IleftCh <'a' || leftCh > 'Z") { left +=1, }
else if (rightCh !=leftCh) { mightBePal = false; }
else
{ left +=1,

right -= 1,
}

}

return mightBePal,

}

Programmers often need to deal with sets of values:
Gender: male, female
Direction: north, south, east, west
Grade of gasoline: bronze, silver, gold

What can go wrong with code like the following?
public static final int EAST = 0O;
public static final int SOUTH = 1;
public static final int WEST = 2;
public static final int NORTH = 3;

public void face(int directionToFace)

[..

7.3.4: Understanding Enumerations

A better solution... _ _
Enumerations are like

classes:

/** An enumeration of the four compass directions.

*

* @author Byron Weber Becker */ ° Documented the

public enum Direction same way.
(e Go into thei
EAST, SOUTH, WEST, NORTH]E?I% Into their own
} .
Values are placed in a
?ublic class SimpleBot extends Paintable comma-separated list.

private int street;

private int avenue;
private Direction dir;

7.3.4: Understanding Enumerations

public void face(Direction directionToFace)
{ while (this.dir !=directionToFace)
{ this.turnLeft();

}
}
}

Case Study 2: A Toll Booth

Write a class, TollBooth, that implements the
calculations for a toll booth like is found on
many highways.

When a vehicle arrives at the booth, ascale =
calls the arrival method, passing the weight of &
the vehicle as an argument. The toll is

assessed according to the chart. Weight Toll

Each time a coin is placed in the toll booth’s 1-5000 $0.35

receptacle, the collectCoin method is called. | 5551_250900 $0.50

The value of the coin is passed as a parameter.

An associated display calls getAmountOwed >25000 | $1.50
to determine how much toll remains to be paid.

The gate mechanism calls the okToLiftGate query to determine if the
gate should be lifted so the vehicle can pass. After the gate is lifted
and the scales determine the vehicle has left, the departure method is
called.

Calling getTotalCollected and getTotalVehicles returns the total of
the tolls and the total number of vehicles that pass, respectively.

Case Study 2: Beginning the Class

public class TollBooth extends

{ public TollBooth() ...
public arrival() ...
public departure() ...
public collectCoin() ...
public getAmountOwed() ...
public okToLiftGate() ...
public getTotalCollected() ...
public getTotalVehicles() ...
}

Add return types and parameters to the method names given in the
problem statement. Turn each method into a “stub” for testing by
adding just enough of the body so that it will compile.

public class TollBooth extends Object
{

public TollIBooth(See Note) { super(); }
public void arrival(int weight) {}
public void departure() {}

public void collectCoin(double value) { }

public double getAmountOwed() { return 0.0; }
public boolean okToLiftGate() { return false; }
public double getTotalCollected() { return 0.0; }
public int getTotalVehicles() { return O; }

Case Study 2: Beginning the Class

}

Note: The class could be made more flexible by passing the weights
and associated toll amounts when the TollIBooth object is constructed
— but for now we’ll just use hard-coded values.

Case Study 2: Start a Test Suite

Import becker.util. Test;

public class TollBooth extends Object

{ public TollBooth() { super(); }
public void arrival(int weight) { }
public void departure() { }
public void collectCoin(double value) { }
public double getAmountOwed() { return 0.0; }
public boolean okToLiftGate() { return false; }
public double getTotalCollected() { return 0.0; }
public int getTotalVehicles() { return O; }

public static void main(String[] args)
{ Test tester = new Test();

/] Test getTotalVehicles

TollBooth tb = new TollBooth();

tester.ckEquals("No vehicles yet", O, tb.getTotalVehicles());
tb.arrival(3000);

tb.departure();

tester.ckEquals('Total: 17, 1, tb.getTotalVehicles());
tb.arrival(5000);

tb.departure();

tester.ckEquals('Total: 2", 2, tb.getTotalVehicles());

Case Study 2: Passing getTotalVehicles tests

public class TollBooth extends Object
{ private int tVehicles = 0; // total vehicles

-t

|.3“ublic void departure()
{ this.tVehicles += 1,

}

public int getTotalVehicles()
{ return this.tVehicles;

}

public static void main(String[] args)
{ Test tester = new Test();

/] Test getTotalVehicles

TollBooth tb = new TollBooth();

tester.ckEquals("No vehicles yet", O, tb.getTotalVehicles());
tb.arrival(3000);

tb.departure();

tester.ckEquals('Total: 1, 1, th.getTotalVehicles());
tb.arrival(5000);

tb.departure();

tester.ckEquals('Total: 2", 2, tb.getTotalVehicles());

—

public class TollBooth extends Object

{ private int tVehicles = 0;
public TollBooth()...
public void arrival(int weight)...
public void departure()...
public void collectCoin(double value)...
public double getAmountOwed()...
public boolean okToLiftGate()...
public double getTotalCollected()...
public int getTotalVehicles()...

public static void main(String[] args)

{

/] Test getTotalCollected

tb = new TollBooth();

tester.ckEquals("Nothing collected yet", 0.0, tb.getTotalCollected());
tb.arrival(3000);

tb.collectCoin(0.25);

tb.collectCoin(0.10);

tb.departure();

tester.ckEquals("Collected: 1, 0.35, tb.getTotalCollected());
tb.arrival(5000);

tb.collectCoin(0.25);

tb.departure();

tester.ckEquals("Collected: 2", 0.60, tb.getTotalCollected());

Case Study 2: Testing getTotalCollected

public class TollBooth extends Object
{ private double tCollected; /1 total collected

|.3“ublic void collectCoin(double value)
{ this.tCollected +=value;

}

.p.L.Jb”C double getTotalCollected()
{ return this.tCollected,;

public static void main(String[] args)

{

Il Test getTotalCollected

tb = new TollBooth();

tester.ckEquals("Nothing collected yet", 0.0, tb.getTotalCollected());
tb.arrival(3000);

tb.collectCoin(0.25);

tb.collectCoin(0.10);

tb.departure();

tester.ckEquals("Collected: 1", 0.35, tb.getTotalCollected());
tb.arrival(5000);

tb.collectCoin(0.25);

tb.departure();

tester.ckEquals(Collected: 2", 0.60, th.aetTotalCollected());

Case Study 2: Pass getTotalCollected tests

public class TollBooth extends Object

{ private int tVehicles = 0;
private double tCollected = 0.0;
public TollBooth()...
public void arrival(int weight)...
public void departure()...
public void collectCoin(double value)...
public double getAmountOwed()...
public boolean okToLiftGate()...
public double getTotalCollected()...
public int getTotalVehicles()...

public static void main(String[] args)

{

/I Test getAmountOwed

tb = new TollBooth();

tester.ckEquals("Nothing owed yet", 0.0, tb.getAmountOwed());
tb.arrival(5000);

tester.ckEquals("owe $0.35", 0.35, tb.getAmountOwed());
tb.collectCoin(0.25);

tester.ckEquals("owe $0.10", 0.10, tb.getAmountOwed());
tb.collectCoin(0.10);

tester.ckEquals("owe $0.00", 0.00, tb.getAmountOwed());
tb.departure();

Case Study 2: Testing getAmountOwed

public class TollBooth extends Object
{ private double vToll;

public void arrival(int weight) public void departure()
{ If (weight <=5000) { this.tVehicles +=1;
{ this.vToll = 0.35; this.vToll =0.0;
} else if (weight <= 25000) }
{ this.vToll = 0.50;
} else public double getAmountOwed()
{ this.vToll = 1.50; { return this.vToll;
} }
}

public void collectCoin(double value)
{ this.tCollected +=value;
this.vToll -= value;

}

public static void main(String[| args)

{ ..
}

Case Study 2: Passing getAmountOwed

Case Study 2: Testing okToLiftGate

public class TollBooth extends Object

{ private int tVehicles = 0;
private double tCollected = 0.0;
private double vToll;

public TollBooth()... public double getAmountOwed()...
public void arrival(int weight)... public boolean okToLiftGate()...
public void departure()... public double getTotalCollected()...
public void collectCoin(double value)... public int getTotalVehicles()...

public static void main(String[] args)

{

Il Test okToLiftGate

tb = new TollBooth();

tester.ckEquals('gate down", false, tb.okToLiftGate());
tb.arrival(5000);

tester.ckEquals("gate down", false, tb.okToLiftGate());
tb.collectCoin(0.25);

tester.ckEquals("gate down", false, tb.okToLiftGate());
tb.collectCoin(0.10);

tester.ckEquals('gate down", true, tb.okToLiftGate());

tb.departure();

tester.ckEquals("gate down", false, tb.okToLiftGate());

Case Study 2: Passing okToLiftGate tests

public class TollBooth extends Object

{

—

private boolean gateUp = false; I/ should the gate be lifted up?

public void departure()

{ this.tVehicles += 1,
this.vToll = 0.0;
this.gateUp = false;

}

public boolean okToLiftGate()
{ return this.gateUp;

}

public void collectCoin(double value)
{ this.tCollected += value;

this.vToll -= value;

this.gateUp =this.vToll <= 0.0;

}

public static void main(String[] args)

{ ..
}

Case Study2: Completed Class (1/3)

Import becker.util. Test;

[** A TollBooth collects money from passing vehicles according to a set fee schedule and

* determines when it's ok to lift the gate to allow the vehicles to pass.
*

* @author Byron Weber Becker */
public class TollBooth extends Object

{
private int tVehicles = 0; /I total number of vehicles
private double tCollected = 0.0; // total amount collected
private double vToll; /1 toll still owing for the current vehicle

private boolean gateUp =false; // should the gate be up?

public TollBooth()
{ super();
}

[** Get the total amount collected in tolls. */
public double getTotalCollected()
{ return this.tCollected,

}

Case Study 2: Completed Class (2/3)

[** Get the total number of vehicles that have passed. */
public int getTotalVehicles()
{ return this.tVehicles;

}

[** A vehicle with the given weight has arrived at the toll booth. */
public void arrival(int weight)
{ If (weight <=5000)

{ this.vToll = 0.35;

} else if (weight <= 25000)

{ this.vToll = 0.50;

} else

{ this.vToll = 1.50;

}
}

[** A vehicle has departed from the toll booth. */
public void departure()

{ this.tVehicles += 1,

this.vToll = 0.0;

this.gateUp = false;

}

Case Study 2: Completed Class (3/3)

[** Collect a coin in payment for the toll. */
public void collectCoin(double value)
{ this.tCollected +=value;

this.vToll -= value;

this.gateUp =this.vToll <= 0.0;

}

[** Get the amount still owed for the current vehicle's toll. */
public double getAmountOwed|()
{ return this.vToll;

}

[** Determine whether enough has been paid to lift the gate. */

public boolean okToLiftGate()
{ return this.gateUp;

}

[** Test the class. */
public static void main(String[] args)

{ Test tester = new Test();
/] Test getTotalVehicles

TollBooth tb = new TollBooth();

Many other tests have
been omitted here.

tester.ckEquals("No vehicles yet", O, tb.getTotalVehicles());

}

7.5.1: Using Class Variables

Instange varla_bles store a \{alue ona SavingsAccount
per-object basis. Every object has Its "double balance

own copy of the variable that may be -String ownerName

different from the value stored by other |-double interestRate

ObjECtS. + Account(String theOwnersName)

+void deposit(double amount)
+void withdraw(double amount)
+double getBalance()

+void paylnterest()

+void setlnterestRate(double rate)
+double getlnterestRate()

public class SavingsAccount extends Object

{ private double balance = 0.0;
private String ownerName; Every savings account has
private double interestRate = 0.025; its own balance and owner.
public void setinterestRate(double\ate)
{ thiS-int@ate = rate, All savings accounts should
} : have the same interest rate —
} Sets the IS [l but an instance variables
for only this account. | | 516y them to be different.

7.5.1: Using Class Variables

public class SavingsAccount extends Object

{ private dOl_JbIe balance = O..O; Class variables
private String ownerName;
(also known as

private static double interestRate = 0.025;) :
static variables) are

public double getinterestRate() shared by all of the

{ /I The preferred way to reference a class variable. iInstances of a class.
return SavingsAccount.interestRate;

} SavingsAccount

public double getinterestRate()
{ 1 Another way to reference a class variable.
return this.interestRate;

}

-double balance
-String ownerName
-static double interestRate

public double getinterestRate() 1é;;ﬁ:;f;%iiﬁ?ﬁiﬁme)

{ /1 stil angther way to reference a class variable. +void withdraw(double amount)
return interestRate; +double getBalance()

} +void paylnterest()
+void setlnterestRate(double rate)

public void setinterestRate(double rate) |fdouble getlnterestRate()
{ SavingsAccount.interestRate = rate;

) ~
} Sets the Interest rate
for all accounts.

public class SavingsAccount extends Object
{ private double balance = 0.0;
private String ownerName;
private static double interestRate = 0.025;
private final int accountNum;
private static int nextAccountNum = 0;

public SavingsAccount(String owner)

{ super();
this.ownerName = owner;
this.accountNum = nextAccountNum;
SavingsAccount.nextAccountNum += 1,

}

public double getinterestRate()
{ I/l The preferred way to reference a class variable.
return SavingsAccount.interestRate;

}

public void setinterestRate(double rate)
{ SavingsAccount.interestRate = rate;

}

7.5.1: Assigning Unique ID Numbers

7.5.2: Using Class Methods

public class SavingsAccount extends Object

{

private static double interestRate = 0.025;

public static double getinterestRate()
{ return SavingsAccount.interestRate;

}

public static void setinterestRate(double rate)
{ SavingsAccount.interestRate = rate,

}

public static void main(String[] args)

{ Test.ckEquals("initial rate", 0.025, SavingsAccount.getinterestRate());
SavingsAccount bill = new SavingsAccount("Bill Gates");
SavingsAccount melinda = new SavingsAccount("Melinda Gates");
Test.ckEquals(“initial rate", 0.025, bill.getInterestRate());

SavingsAccount.setlnterestRate(0.030);

Test.ckEquals("new rate", 0.030, SavingsAccount.getinterestRate());
Test.ckEquals('new rate", 0.030, bill.getInterestRate());
Test.ckEquals('new rate", 0.030, melinda.getinterestRate());

7.5.2: Using Class Methods

Helpful class methods in the Java library include:

In the Math class:

int abs(int x)

double abs(double x)

double cos(double x)

double log(double x)

Int max(int x, int y)

double max(double x, double y)
Int min(int x, int y)

double min(double x, double y)

In the Character class:
boolean isDigit(char ch)
boolean isLetter(char ch)
boolean isLowerCase(char ch)

Usage:

If (Math.random() < 0.50)

{ 1/ do something about ¥ of the time

} else

{ 1/ do something else about ¥ of the time

}

double pow(double x, double y)
double random()

long round(double x)

double sin(double x)

double sqgrt(double x)

double tan(double x)

double toDegrees(double x)
double toRadians(double x)

boolean isUpperCase(char ch)
boolean isWhitespace(char ch)

Using Java Interfaces

7.6: GUI:

The toll booth class can be used with a graphical user interface in the
becker library.

i Toll Booth A& 0] x|
Payment Totals
$0.01 Total Collected: $5.00
$0.05 Total Vehicles: 3
$0.10
$0.25
$1.00
$0.35
public class Main
{ public static void main(String[] args)
{ TollBooth booth = new TollBooth(); Il our code

}

}

TollIBoothGUI gui = new TollBoothGUI(booth);

/| someone else’s code

7.6.1: Specifying Methods with Interfaces

Problem: The graphical user interface (TollBoothGUI) has already
been written. It needs to call methods in TollBooth. How can it be
assured that our implementation of TollBooth has the required
methods with the required names, parameters, and return types?

Solution: The author of the graphical user interface provides a file
listing the methods TollBoothGUI expects to find in TollBooth.

public interface ITollBooth

{ public void arrival(int weight);
public void departure();
public double getAmountOwed();
public double getTotalCollected();
public int getTotalVehicles();
public void collectCoin(double value);
public boolean okToLiftGate();

This file is called an
Interface, which is
completely different from
a graphical user interface.
This interface is used to
guarantee the presence of
the specified methods in a
class that implements the
Interface.

How is the ITollBooth interface used?

public class TollIBoothGUI extends ...
{

private ITollBooth model;

public TollBoothGUI(ITollIBooth model)

{ super();
this.model = model:

. —

Implementing an Interface

—

public class TollBooth extends Object implements ITollIBooth
{ private int tVehicles = 0; /I total number of vehicles
private double tCollected = 0.0; // total amount collected

7.6.2:

Import becker.util.ViewList;
Import becker.util.ViewList;

public class TollBooth extends Object implements ITollIBooth

{

private ViewList views = new ViewList();

|.3.l.Jb|iC void addView(IView aView)
{ this.views.add(aView);

}
public void arrival(int weight) public double getTotalCollected()
{ ... { return this.tCollected;
this.vToll = 0.35; }
this.views.updateAllViews(); public int getTotalVehicles()
} { return this.tVehicles;
}

Informing User Interface of Changes

public void departure()
{ this.tVehicles +=1,;

7.6.4:

this.views.updateAllViews();

}
}

7.7.1: The Test Harness Pattern

Name: Test Harness

Context: You want to increase the reliability of your code and make
the development process easier.

Solution: Write a main method in each class used for testing.
Import becker.util.Test;
public class «className» ...

{ I/ instance variables and methods

public static void main(String[] args)
{ /I Create a known situation
«className» «instance» = new «className»(...);
/I Execute the code being tested
«instance».«methodToTest»(...);
/[Verify the results
Test.ckEquals(«1dString», «expectedValue», «actualValue»);

Consequences: Writing tests before coding helps focus development
and ensure quality.

Related Patterns: This pattern is a specialization of Java Program.

7.7.2: The toString Pattern

Name: toString

Context: You want to easily print information about an object, often
for debugging.

Solution: Override the toString method in each class to print out

relevant information.
public String toString()
{ return "«className»[" +

"«1nstanceVarNamel»=
" «instanceVarName2Z2»=

+ this.«1nstanceVarNamel» +
"+ this.«1nstanceVarName2» +

. «iInstanceVarNameN»=" + this.«instanceVarNameN» +
1
}
Consequences: This method is called automatically by print and
println, making it easy to print relevant information.

Related Patterns: This is a specialization of the Query pattern.

7.7.3: The Enumeration Pattern

Name: Enumeration

Context: You would like variables to hold a value from a specific set
of values such as MALE or FEMALE or one of the four directions.

Solution: Define an enumeration type listing the desired values.
public enum «typeName»
{ «wvalueNamel», «wvalueName2», «valueName3», ..., «valueNameN»

}

For example:

public enum JeanStyle
{ CLASSIC, RELAXED, BOOT_CUT, LOW_RISE, STRAIGHT

}

pbulic class DenimJeans
{ private JeanStyle style;
public DenimJeans(JeanStyle aStyle)...

Consequences: Enumeration variables may have only values defined
In the enumeration, helping to avoid programming errors.

Related Patterns: Named Constant

7.7.4: The Assign a Unique ID Pattern

Name: Assign a Unique ID
Context: Each instance of a class requires a unique identifier.

Solution: Store the unique ID in an instance variable. Use a class

variable to maintain the next ID to assign.
public class «className»...
{ private int «xunique ID»;
private static int «xnextUniquelD» = «FirstiD»;

public «kclassNamex»(...)

{

this.«un1quelD» = «className».«nextUnique 1 Dx»;
«className».«nextUniquelD» +=1;

}
}

Consequences: Unique identifiers are assigned to each instance of the
class for each execution of the program.

Related Patterns: This pattern makes use of the Instance Variable
pattern.

' | a known

Y starts with o
situation ‘
integer

A types
i adude
ERA .
5’;- A U’o | - ﬂoatlng

T y ‘

5 O —

S 5% <& OO/O e
2T\ & %
5
=
>
B

§
b

class

variables

variables

Summary

We have learned:
e how to test a class with its own main method.

e about numeric types such as int and double, including their
differing ranges and precision, converting between types,
formatting, and shortcuts such as +=.

e about non-numeric types, including boolean, char, String, and
enumerated types.

e how to use these types in a class that had nothing to do with robots.
e about class variables and methods.

e how to use a Java interface to make a class we write work with a
class written by someone else, such as a graphic user interface.

